scrivere l'equazione della circonferenza passante per P, Q ed R e determinarne il centro ed il raggio		
1	P(-9,9), Q(-2,0), R(-8,6)	$x^{2} + y^{2} - 7x - 23y - 18 = 0$ $C\left(\frac{7}{2}, \frac{23}{2}\right) r = \frac{5\sqrt{26}}{2}$
2	P(-6,-8), Q(-9,1), R(4,2)	$x^{2} + y^{2} + \frac{9x + 7y}{2} - 45 = 0$ $C\left(-\frac{9}{4}, -\frac{7}{4}\right) r = \frac{5\sqrt{34}}{4}$
3		$x^{2} + y^{2} = \frac{50 - 23x - 11y}{3}$ $C\left(-\frac{23}{6}, -\frac{11}{6}\right) r = \frac{25\sqrt{2}}{6}$
4	P(-9,-7), Q(5,-2), R(6,-7)	$x^{2} + y^{2} + 3x + \frac{59y}{5} - \frac{102}{5} = 0$ $C\left(-\frac{3}{2}, -\frac{59}{10}\right) r = \frac{13\sqrt{34}}{10}$

S	scrivere l'equazione della circonferenza circoscritta al triangolo formato dalle tre rette assegnate			
5	r: $5x + 4y - 5 = 0$, s: $4x + 7y - 23 = 0$, t: $x - 3y - 1 = 0$	$19x^2 + 19y^2 = 47x + 163y - 28$		
6	r: $x - 7y + 12 = 0$, s: $7x - 4y - 6 = 0$, t: $2x + y + 9 = 0$	$x^2 + y^2 + \frac{7x}{3} + \frac{5y}{3} - 16 = 0$		

	scrivere l'equazione della circonferenza inscritta al triangolo formato dalle tre rette assegnate			
7	$r: \frac{11x}{2} + \frac{18y}{5} = \frac{201}{10}, s: \frac{18y}{5} = \frac{238}{5} + \frac{11x}{2}t: \frac{3x}{2} + \frac{32y}{5} + \frac{318}{5} = 0$	$5x^2 + 5y^2 = 151 - 25x - 26y$		
8	r: $\frac{17x}{3} + 2y - \frac{98}{3} = 0$, s: $\frac{x}{3} - 6y + \frac{164}{3} = 0t$: $\frac{10x}{3} + 5y + \frac{80}{3} = 0$	$x^2 + y^2 + \frac{10x}{3} - 6y - \frac{73}{3} = 0$		

dire sulla posizione reciproca tra due circonference e calcolare gli eventuali punti di intersezione		
9	Γ_1 : $x^2 + y^2 + \frac{15}{16} = \frac{8x + 6y}{5}$, Γ_2 : $x^2 + y^2 = \frac{32x}{5} + \frac{132y}{35} + \frac{9}{2}$	Interne
10	Γ_1 : $x^2 + y^2 + \frac{10x}{9} + \frac{199y}{24} = -\frac{27}{8}$, Γ_2 : $x^2 + y^2 + 7x + \frac{31y}{8} = \frac{79}{8}$	Secanti, $A(-3, -7)$, $B(\frac{3}{2}, -1)$
11	Γ_1 : $x^2 + y^2 + 4y = -\frac{144}{49}$, Γ_2 : $x^2 + y^2 + 2x + y = \frac{332}{49}$	Tangenti interne, $T\left(\frac{4}{7}, -\frac{20}{7}\right)$
12	Γ_1 : $x^2 + y^2 - \frac{4x}{5} + \frac{4y}{3} = -\frac{4}{9}$, Γ_2 : $x^2 + y^2 - \frac{14x}{5} - \frac{58y}{15} = 10$	Interne

fasci di circonferenze			
 Dato (k+1)(x²+y²) + 6(k-1)x + 2(4k-5)y = 39k-33 un fascio di circonferenze, determinare: a) la circonferenza del fascio passante per il punto A(0,2); b) i valori di k corrispondenti alle circonferenze del fascio tangenti alla retta di equazione x + y = 3; c) i valori di k corrispondenti alle circonferenze del fascio che staccano sull'asse delle x una corda di lunghezza √12 	$x^{2} + y^{2} = 1 + \frac{x}{3} + \frac{3y}{2}$ $k = \frac{1 \pm 9\sqrt{2}}{14}$ $k = 1, \ k = -\frac{3}{5}$		

14	Dato $(k + 1)(x^2 + y^2) + 4(1 - 2k)x - 4(4k + 3)y + 79k + 24 = 0$ un fascio di circonferenze, determinare:	
	a) le circonferenze del fascio tangenti alla retta $3x + y = \frac{55}{4}$;	Non ne esistono
	b) se la circonferenza di raggio $\sqrt{541}$ e centro $\mathcal{C}(-20,0)$ appartiene al fascio, e se sì per quale k ;	$k = -\frac{3}{4} k = 0, \ k = -\frac{11}{3}$
	c) i valori di k corrispondenti alle circonferenze del fascio che staccano sulla retta $3y-x=20$ una corda di lunghezza 8	
	Dato $(k + 1)(x^2 + y^2) + 2(7 + 6k)x + 2(3 + 8k)y + 96k + 9 = 0$ un fascio di circonferenze, determinare:	Non esiste
15	a) la circonferenza del fascio passante per $A\left(-\frac{293}{52}, -\frac{511}{52}\right)$;	$x^2 + y^2 + 10x + 26y + 183 = 0$
15	b) le circonferenze del fascio di area pari a 11π ;	$x^{2} + y^{2} + \frac{163x + 173y}{13} = -\frac{1887}{26}$ $x^{2} + y^{2} + \frac{412x}{20} + \frac{144y}{20} = 0$
	c) la circonferenza del fascio concentrica a quella di equazio-ne	$x + y + \frac{1}{29} + \frac{1}{29} = 0$
	$29x^2 + 29y^2 + 412x + 144y = \frac{6204}{29}$	
	Dato il fascio di circonferenze avente $A(-1,0)$ e $B\left(-\frac{3}{10},\frac{1}{2}\right)$ co-me	
	punti base, determinare la circonferenza:	$5x^2 + 5y^2 - 11x + 22y = 16$
16	a) del fascio di raggio $\frac{\sqrt{37}}{2}$;	$5x^2 + 5y^2 + 24x - 27y = -19$
	b) del fascio il cui centro appartiene alla ret-ta di equazione $y = 7x + \frac{7}{50}$;	$x^{2} + y^{2} + \frac{4x}{21} + \frac{79y}{75} = \frac{17}{21}$ $10x^{2} + 10y^{2} + 13x - 5y = -3$
	c) del fascio il cui centro appartiene all'asse radicale.	
	Dato il fascio di circonferenze avente $T\left(-1, -\frac{7}{3}\right)$ come unico	
	punto base e $8x - 3y + 1 = 0$ come retta dei centri, determinare:	$x^2 + y^2 = x + \frac{10y}{3} + \frac{137}{9}$
	a) gli elementi del fascio la cui circonferenza vale $\sqrt{73}\pi$;	$x^{2} + y^{2} + 5x + \frac{38y}{3} + \frac{253}{9} = 0$
17	b) i valori del coefficiente <i>a</i> tali che le corrispondenti circon-fernze stacchino sull'asse delle ordinate corde di lunghezza maggiore o uguale a 9;	$a \le -\frac{19}{16} \cup a \ge \frac{23}{4}$ $x^2 + y^2 + 2x + \frac{14y}{3} + \frac{58}{9} = 0$
	c) la circonferenza del fascio tangente alla retta $y = x - \frac{4}{3}$	

4	trovare le generatrici, la retta dei centri, l'asse radicale e i punti base dei seguenti fasci di circonferenze		
18	$(k+1)(x^2+y^2) + 4(3k+4)y + 8(2k+1)x + 96k + 64 = 0$	$x^{2} + y^{2} + 8x + 16y + 64 = 0$ $x^{2} + y^{2} + 16x + 12y + 96 = 0$ $x + 2y + 20 = 0$ $2x - y + 8 = 0$ $A(-8, -8) B\left(-\frac{32}{5}, -\frac{24}{5}\right)$	
19	$(k+1)(x^2+y^2) + 2(6k-5)x + 10(1-k)y + 57k + 14 = 0$	$x^{2} + y^{2} - 10x + 10y + 14 = 0$ $x^{2} + y^{2} + 12x - 10y + 57 = 0$ $10x + 11y + 5 = 0$ $22x - 20y + 43 = 0$ Non esistono	
20	$(k+1)(x^2+y^2) + 20(k+1)x + 2(7-3k)y = -100(k+1)$	$x^{2} + y^{2} + 20x + 14y + 100 = 0$ $x^{2} + y^{2} + 20x - 6y + 100 = 0$ $x = -10$ $y = 0$ $T(-10,0)$	

21	$(k+1)(x^2+y^2) + 4(5k+1)x + 2(9k+1)y + 132k = 20$	$x^{2} + y^{2} + 20x + 18y + 132 = 0$ $x^{2} + y^{2} + 4x + 2y = 20$ $y = x + 1$ $x + y = -\frac{19}{2}$ $A\left(-\frac{21 + \sqrt{31}}{4}, \frac{\sqrt{31} - 17}{4}\right)$ $B\left(\frac{\sqrt{31} - 21}{4}, -\frac{\sqrt{31} + 17}{4}\right)$
22	$(k+1)(x^2+y^2) + 2(3k-8)x + 2(7k-10)y + 9k = -163$	$x^{2} + y^{2} - 16x - 20y + 163 = 0$ $x^{2} + y^{2} + 6x + 14y + 9 = 0$ $17x - 11y = 26$ $11x + 17y = 77$ Non esistono

	esercizi di riepilogo		
23	Si trovino il baricentro, l'incentro e il circocentro del triangolo circoscritto alla circonferenza di equazione $x^2 + y^2 - x + y = 32$, in-scritto nella circonferenza di equazione $x^2 + y^2 = \frac{339x}{14} - \frac{67y}{2} + \frac{1914}{7}$ e con un vertice nel punto $P\left(\frac{3}{2},\frac{15}{2}\right)$	$G\left(\frac{60}{7}, -\frac{26}{3}\right)$ $I\left(\frac{1}{2}, -\frac{1}{2}\right)$ $C\left(\frac{339}{28}, -\frac{67}{4}\right)$	
24	Si determini se è possibile costruire un triangolo circoscritto alla circonferenza di equazione $x^2 + y^2 + \frac{4y}{3} = \frac{47}{3}$, inscritto in quella di equazione $x^2 + y^2 + \frac{435x}{7} + \frac{898y}{21} = \frac{917}{3}$ e con il lato maggiore appar-tenente al fascio di rette $2x + \frac{y}{6} - 2 + k(24x + 2y + 3) = 0$	$A(-5,11) B(0,-49) C\left(\frac{29}{7},\frac{5}{7}\right)$	
25	Si determini che tipo di triangolo può essere circoscritto alla circon-ferenza di equazione $x^2 + y^2 + 6x + 2y = 90$ e inscritto in quella di equazione $x^2 + y^2 + 6x + 2y = 390$; se ne trovi quindi l'area.	Equilatero $300\sqrt{3}$	
26	Si determinino tutte le rette del fascio $40x + 40y + 5k(2x - 1 + 2y) = 1$ che individuano una corda di lunghezza $\sqrt{14}$ sulla circonferenza di equazione $x^2 + y^2 + 8x + \frac{20y}{7} + \frac{688}{49} = 0$. Qual è l'area del quadrilatero inscritto che ammette tali corde come basi?	$x + y + \frac{31}{7} = 0$ $x + y + \frac{45}{7} = 0$ $2\sqrt{7}$	
27	Si trovino le equazioni delle due rette passanti per il punto $P(-9,5)$ tali da essere tangenti alla circonferenza passante per i punti $A(-3,-5)$, $B(-3,-3)$ e $C(3,-1)$. Si determini inoltre la distanza tra i loro punti di tangenza.	$87x + 79y + 388 = \pm \frac{40\sqrt{13}}{3}(x+9)$ $8\sqrt{\frac{130}{157}}$	
28	Sono dati i punti $A(-4,0)$, $B(-6,1)$ e la circonferenza Γ di equazione $x^2 + y^2 + \frac{32x}{3} - \frac{4y}{3} = -\frac{2320}{81}$. Si traccino le rette per A e B tangen-ti a Γ e si consideri il quadrilatero inscritto formato congiungendo i quattro punti di tangenza così trovati. Si riconosca il tipo di quadri-latero e se ne calcoli l'area.	Trapezio isoscele $A = \frac{20}{243} \left(\sqrt{5} + 2\sqrt{2} \right)$	
29	Sono dati i punti $A(9,-6)$, $B(1,-4)$ e $C(-5,6)$. Si trovi il baricentro del triangolo formato dalle rette tangenti in A, B e C alla circon-ferenza passante per quegli stessi punti.	$G\left(-\frac{23}{18}, -\frac{83}{18}\right)$	

30	Sono dati la circonferenza Γ di equazione $x^2 + y^2 + 7 = \frac{16y}{3}$ ed il fascio di rette $y - \frac{8}{3} = \frac{x}{5}(8k - 9)$. Dopo aver determinato i punti di intersezione di Γ con le rette del fascio di coefficienti angolari 0 e $-\frac{3}{5}$ rispettivamente, si traccino le rette tangenti a Γ nei punti trova-ti, si riconosca il quadrilatero da esse formato e se ne calcoli l'area.	Rombo, $A = \frac{4\sqrt{34}}{27}$
31	Trovare le equazioni di tutte le circonferenze tangenti agli assi coordinati e alla retta $3x + 3y = 1$. Quante sono?	$x^{2} + y^{2} + \frac{1}{18} = \pm \frac{\sqrt{2}}{3}(x - y)$ $x^{2} + y^{2} + \frac{1}{6} \pm \frac{\sqrt{2}}{9} = \frac{2 \pm \sqrt{2}}{3}(x + y)$
32	Dato il triangolo ABC con $A(1,-4)$, $B(-3,-7)$ e $C(-3,7)$, costruire tre circonferenze centrate nei vertici di ABC tali che ciascuna di esse sia tangente esternamente alle altre due.	$x^{2} + y^{2} + 8y - 2x = \frac{75 - 9\sqrt{137}}{2}$ $x^{2} + y^{2} + 6x + 14y = \frac{133 - 19\sqrt{137}}{2}$ $x^{2} + y^{2} + 6x - 14y = \frac{9\sqrt{137} - 7}{2}$
33	Scrivere l'equazione della circonferenza Γ circoscritta al triangolo di vertici $A(1,1), B(-1,-1), C(-2,1)$. Scrivere l'equazione della retta r parallela alla retta $y=2x+1$ che stacca su Γ una corda di lunghezza $\sqrt{5}$	$x^{2} + y^{2} + x - y - 2 = 0$ $y = 2x - 1$ $y = 2x + 4$
34	Scrivere l'equazione della retta tangente alla circonferenza $x^2 + y^2 - x + 2y - 3 = 0$ nel suo punto P(1,-3). Detti A e B i punti di intersezione della tangente con gli assi cartesiani, determinare le misure del perimetro e dell'area del triangolo AOB	$x - 4y - 13 = 0$ $2p = \frac{13\sqrt{17} + 65}{4}$ $Area = \frac{169}{8}$
35	Scrivere l'equazione della circonferenza passante per il punto $A\left(-3,\frac{1}{2}\right)$ e che ha centro nel punto d'incontro tra le rette $r:y-2x=0$ e $s:x-y-3=0$	$x^2 + y^2 + 6x + 12y + \frac{11}{4} = 0$
36	Scrivere l'equazione della circonferenza concentrica alla circonferenza γ : $2x^2 + 2y^2 - 8x + 4y - 2 = 0$ e passante per il punto $P(4,-1)$	$x^2 + y^2 - 4x + 2y + 1 = 0$
37	Scrivere l'equazione della circonferenza passante per i punti $A(2,3)$, $B(1,5)$ e che ha centro sulla retta $r: x-y+2=0$. Ricercare inoltre per quali valori del parametro k la retta di equazione $y=k$, stacca una corda di lunghezza $\sqrt{31}$ sulla circonferenza precedentemente calcolata.	$x^2 + y^2 - 5x - 9y + 24 = 0$ nessun valore di k