Serie numeriche

definizioni

Data la successione $\{a_n\}=\ a_1,a_2,a_3,\dots$, a_n,\dots si considerino le **somme parziali** s_1,s_2,\dots,s_n :

$$s_1 = a_1$$
 $s_2 = a_1 + a_2$ $s_3 = a_1 + a_2 + a_3$ $s_n = a_1 + a_2 + a_3 + \dots + a_n$

si dice **serie** di termine generale a_n e si indica con $\sum_{n=1}^{+\infty} a_n$ oppure con $\sum a_n$

$$\lim_{n\to+\infty} s_n = S = \sum_{n=1}^{+\infty} a_n = \sum a_n$$

carattere della serie					
se S è finito	• la serie $\sum a_n$ si dice convergente				
se $S = \pm \infty$	• la serie $\sum a_n$ si dice divergente (positivamente o negativamente)				
altrimenti	• la serie $\sum a_n$ è indeterminata				
prime proprietà					
Se $\sum a_n$ converge $\rightarrow \lim_{n \to +\infty} a_n = 0$	condizione necessaria ma non sufficiente per la convergenza di una serie è che il termine generico sia infinitesimo				
assegnate $\sum a_n$ e $\sum b_n$ e $\lambda \in \mathbb{R}$					
se $\sum a_n$ converge $\Leftrightarrow \sum \lambda a_n$ converge	convergenza del prodotto di una costante per una serie				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	convergenza della somma di due serie				

serie notevoli							
simbologia		carattere	nome				
$1 + \frac{1}{2} + \dots + \frac{1}{n} + \dots$	$\sum \frac{1}{n}$	divergente	serie armonica				
$1 + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots$ $p \in \mathbb{R}$	$\sum \frac{1}{n^p}$	$p \le 1$ divergente	serie armonica generalizzata				
		p > 1 convergente					
$1 + q + q^2 + \dots + q^n + \dots$	$\sum\nolimits_{n=0}^{+\infty}q^{n}$	$q \le -1$ irregolare	serie geometrica di ragione <i>q</i>				
		-1 < q < 1 convergente					
		$q \ge 1$ divergente					
$a + aq + aq^2 + \dots + aq^n + \dots$	$\sum\nolimits_{n=0}^{+\infty} aq^n$	$q \le -1$ irregolare	sorio goomotrica di				
		-1 < q < 1 convergente	serie geometrica di punto iniziale <i>a</i> e				
		$q \ge 1$ divergente	ragione q				
$\frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{n(n+1)} + \dots$	$\sum \frac{1}{n(n+1)} = 1$	convergente	serie di Mengoli				

Serie numeriche

Criteri di convergenza

	,	•		
- criterio del	contronto	ber serie (a termini non	neaativi
	•••••	P 0. 0 0 0 .	<u> </u>	,

Date le successioni $\{a_n\}$ e $\{b_n\}$ sia:

• $0 \le a_n \le b_n$

se $\sum b_n$ converge $\rightarrow \sum a_n$ converge

se $\sum a_n$ diverge $\rightarrow \sum b_n$ diverge

criterio del confronto mediante i limiti per serie a termini non negativi

Date le successioni $\{a_n\}$ e $\{b_n\}$ sia:

 $a_n \ge 0$, $b_n \ge 0$

 $\lim_{n \to +\infty} \frac{a_n}{b_n} = l$

se $0 < l < +\infty \rightarrow$ le serie $\sum a_n$ e $\sum b_n$ sono **entrambe** convergenti oppure divergenti

se l = 0 e $\sum b_n$ converge $\rightarrow \sum a_n$ converge

se $l = +\infty$ e $\sum b_n$ diverge $\rightarrow \sum a_n$ diverge

criterio degli infinitesimi per serie a termini non negativi

Data la successione $\{a_n\}$ sia:

 $a_n \ge 0$

 $\lim_{n \to +\infty} n^p a_n = l \quad \text{con } p \in \mathbb{R}$

 $p > 1 \rightarrow \sum a_n$ converge se $0 < l < +\infty$ $p \le 1 \rightarrow \sum a_n$ diverge

e $p > 1 \rightarrow \sum a_n$ converge se l = 0

se $l = +\infty$ e $p \le 1 \rightarrow \sum a_n$ diverge

criterio della radice o di Cauchy per serie a termini positivi

Data la successione $\{a_n\}$ sia:

 $a_n > 0$

 $\lim_{n \to +\infty} \sqrt[n]{a_n} = l \quad \text{con } l \in \mathbb{R}, \ l = +\infty$

se $l < 1 \rightarrow \sum a_n$ converge

se $l > 1 \rightarrow \sum a_n$ diverge

se $l = 1 \rightarrow \text{non si può dire nulla}$

può essere utile in caso di serie con esponenziali

criterio del rapporto o di D'Alembert per serie a termini positivi

Data la successione $\{a_n\}$ sia:

se $l < 1 \rightarrow \sum a_n$ converge

se $l > 1 \rightarrow \sum a_n$ diverge

se $l = 1 \rightarrow \text{non si può dire nulla}$

 $a_n > 0$

può essere utile in caso di serie con fattoriali

 $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l \quad \text{con } l \in \mathbb{R} \text{, } l = +\infty$

criterio di Leibnitz per serie con termini a segno alterno decrescente

Data la successione $\{a_n\}$ sia: $a_n \ge 0$

Data la serie alternante $\sum (-1)^n a_n$

• se $a_{n+1} \leq a_n$

se $\lim_{n\to+\infty} a_n = 0$

 $\rightarrow \sum (-1)^n a_n$ converge

criterio di convergenza assoluta

Data la serie $\sum a_n$ e la serie $\sum |a_n|$

se $\sum |a_n|$ converge $\rightarrow \sum a_n$ converge