Disequazioni irrazionali

con una sola radice quadrata ed un polinomio a secondo membro		
$\sqrt{A} > B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \ge 0 \\ B < 0 \end{array} \right. \cup \left\{ \begin{array}{l} B \ge 0 \\ A > B^2 \end{array} \right.$	$\sqrt{A} < B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \ge 0 \\ B > 0 \\ A < B^2 \end{array} \right.$	
$\sqrt{A} \ge B \qquad \to \qquad \left\{ \begin{array}{l} A \ge 0 \\ B < 0 \end{array} \right. \cup \left\{ \begin{array}{l} B \ge 0 \\ A \ge B^2 \end{array} \right.$	$\sqrt{A} \le B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \ge 0 \\ B \ge 0 \\ A \le B^2 \end{array} \right.$	

con una sola radice quadrata ed un numero positivo n a secondo membro			
$\sqrt{A} > n \to \ A > n^2$	$\sqrt{A} \ge n \to \ A \ge n^2$	$\sqrt{A} < n \rightarrow \begin{cases} A \ge 0 \\ A < n^2 \end{cases}$	$\sqrt{A} \le n \to \begin{cases} A \ge 0 \\ A \le n^2 \end{cases}$
con una sola radice quadrata ed un numero negativo -n a secondo membro			
$\sqrt{A} > -n \rightarrow A \ge 0$	$\sqrt{A} \ge -n \ \to \ A \ge 0$	$\sqrt{A} < -n ightarrow rac{ ext{nessuna}}{ ext{soluzione}}$	$\sqrt{A} \leq -n o ext{nessuna} $ soluzione
con una sola radice quadrata e lo zero a secondo membro			
$\sqrt{A} > 0 \rightarrow A > 0$	$\sqrt{A} \ge 0 \rightarrow A \ge 0$	$\sqrt{A} < 0 \; o \; { ext{nessuna} top soluzione}$	$\sqrt{A} \le 0 \ \to \ A = 0$

con solo due radici quadrate			
$\sqrt{A} > \sqrt{B} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ A > B \end{cases}$	$\sqrt{A} \ge \sqrt{B} \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A \ge B \end{cases}$	$\sqrt{A} < \sqrt{B} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ A < B \end{cases}$	$\sqrt{A} \le \sqrt{B} \to \begin{cases} A \ge 0 \\ B \ge 0 \\ A \le B \end{cases}$

* la disequazione va risolta applicando lo schema di risoluzione per disequazioni irrazionali con una sola radice

	con due radici quadrate	e lo zero a secondo membro	
$\sqrt{A} + \sqrt{B} > 0 \to \begin{cases} A > 0 \\ B > 0 \end{cases}$	$\sqrt{A} + \sqrt{B} \ge 0 \to \begin{cases} A \ge 0 \\ B \ge 0 \end{cases}$	$\sqrt{A} + \sqrt{B} < 0 \rightarrow \emptyset$	$\sqrt{A} + \sqrt{B} \le 0 \to \begin{cases} A = 0 \\ B = 0 \end{cases}$

$$\sqrt{A} + \sqrt{B} \ge \sqrt{C} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ \left(\sqrt{A} + \sqrt{B}\right)^2 \ge \left(\sqrt{C}\right)^2 \end{cases} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ A + 2\sqrt{AB} + B \ge C \end{cases} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ C \ge 0 \\ 2\sqrt{AB} \ge C - A - B * \end{cases}$$

la disequazione va risolta applicando lo schema di risoluzione per disequazioni irrazionali con una sola radice

	con radici cubicne	(o in generale con radici ad indice dispari)
con una sola radice cubica		con due radici cubiche
$\sqrt[3]{A} \geqslant B \rightarrow A \geqslant B^3$		$\sqrt[3]{A} \geqslant \sqrt[3]{B} \rightarrow A \geqslant B$
per risolvere una disequazione con radici cubiche basta isolare la (o le) radici ed elevare entrambi i membri al cubo		

con radici ad indice diverso

nel caso di disequazioni con radici ad indice diverso, si calcola il **mcm** degli indici, si portano le radici allo stesso numero (il mcm degli indici), si sviluppano i calcoli e si risolve la disequazione ottenuta applicando uno degli schemi precedenti

$$\sqrt{A} + \sqrt[3]{B} \ge C \rightarrow \sqrt[6]{A^3} + \sqrt[6]{B^2} \ge C$$

nelle tabelle di questa pagina A, B e C rappresentano generici polinomi o funzioni di x - n è un numero reale positivo