Disequazioni irrazionali

disequazioni con una radice quadrata ed un polinomio a secondo membro

$$\sqrt{A} > B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \geq 0 \\ B < 0 \end{array} \right. \cup \left\{ \begin{array}{l} B \geq 0 \\ A > B^2 \end{array} \right. \qquad \sqrt{A} < B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \geq 0 \\ B > 0 \\ A < B^2 \end{array} \right.$$

$$\sqrt{A} \geq B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \geq 0 \\ B < 0 \end{array} \right. \cup \left\{ \begin{array}{l} B \geq 0 \\ A \geq B^2 \end{array} \right. \qquad \sqrt{A} \leq B \qquad \rightarrow \qquad \left\{ \begin{array}{l} A \geq 0 \\ B \geq 0 \\ A \leq B^2 \end{array} \right.$$

disequazioni con una radice quadrata: casi particolari			
con un numero positivo $m{n}$ a secondo membro	con un numero negativo $-n$	con lo zero a secondo membro	
$\sqrt{A} > n \rightarrow A > n^2$	$\sqrt{A} > -n \rightarrow A \ge 0$	$\sqrt{A} > 0 \rightarrow A > 0$	
$\sqrt{A} \ge n \to A \ge n^2$	$\sqrt{A} \ge -n \rightarrow A \ge 0$	$\sqrt{A} \ge 0 \to A \ge 0$	
$\sqrt{A} < n \rightarrow \begin{cases} A \ge 0 \\ A < n^2 \end{cases}$	$\sqrt{A} < -n ightarrow rac{}{}_{ ext{soluzione}}^{ ext{nessuna}}$	$\sqrt{A} < 0 ightarrow rac{ ext{nessuna}}{ ext{soluzione}}$	
$\sqrt{A} \le n \to \left\{ \begin{array}{l} A \ge 0 \\ A \le n^2 \end{array} \right.$	$\sqrt{A} \leq -n ightarrow rac{}{}_{ ext{soluzione}}$	$\sqrt{A} \le 0 \to A = 0$	

	disequazioni con due rad	ici quadrate (o in generale	con due radici ad indice pari)
$\sqrt{A} > \sqrt{B} \rightarrow \left\{ \begin{array}{l} A \geq 0 \\ B \geq 0 \\ A > B \end{array} \right.$	$\sqrt{A} \ge \sqrt{B} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ A \ge B \end{cases}$	$\sqrt{A} < \sqrt{B} \rightarrow \begin{cases} A \ge 0 \\ B \ge 0 \\ A < B \end{cases}$	$\sqrt{A} \le \sqrt{B} \to \left\{ \begin{array}{l} A \ge 0 \\ B \ge 0 \\ A \le B \end{array} \right.$

per risolvere una disequazione con due radici quadrate basta isolare le radici ai due membri e risolvere il sistema formato dai radicandi posti maggiori o uguali a zero e dalla disequazione ottenuta elevando al quadrato entrambi i membri

1

gli schemi precedenti si possono applicare solo se, una volta isolate le radici ai due membri, esse risultano entrambe positive

disequazioni con radici cubiche (o in generale con due radici ad indice dispari)

con una sola radice cubica	con due radici cubiche
$\sqrt[3]{A} \geqslant B \rightarrow A \geqslant B^3$	$\sqrt[3]{A} \geqslant \sqrt[3]{B} \rightarrow A \geqslant B$

per risolvere una disequazione con due radici cubiche basta isolare la (o le) radici ed elevare entrambi i membri al cubo

disequazioni con radici ad indice diverso

nel caso di disequazioni con radici ad indice diverso, si calcola il **mcm** degli indici, si portano le radici allo stesso indice (il mcm degli indici), si sviluppano i calcoli e si risolve la disequazione ottenuta applicando uno degli schemi precedenti

$$\sqrt{A} \geqslant \sqrt[3]{B} \rightarrow \sqrt[6]{A^3} \geqslant \sqrt[6]{B^2}$$