premessa

considerata una funzione y = f(x)

- sia **D** il suo dominio
- sia x_0 un punto di accumulazione per D

si dice che l è il limite per x che tende a x_0 di f(x):

e si scrive

$$\lim_{x\to x_0} f(x) = l$$

• per ogni intorno *I di l*

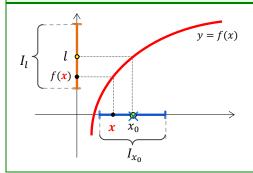
- per ogni intorno i ar i
- esiste un intorno \emph{I} \emph{di} \emph{x}_{0}
- tale che per ogni *x* :
 - appartenente all'intorno $I di x_0$

definizione topologica

- appartenente al dominio D
- diverso dal punto x_0
- si ha che f(x) appartiene all'intorno I di l

definizione topologica o insiemistica

se:

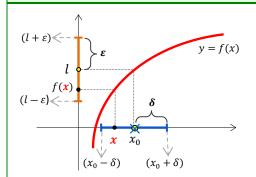


$$\forall \, I_l \quad \exists \, I_{x_0}: \ \, \forall x \in \, (\, I_{x_0} \cap D) - \{x_0\} \, \Rightarrow \, \, f(x) \in I_l$$

La definizione insiemistica di limite di una funzione in un punto è una definizione generale. Essa è infatti valida per ogni valore finito o infinito di x_0 e di l.

La lettura di tale definizione è riportata nel riquadro "definizione topologica" in alto a destra

definizione algebrica



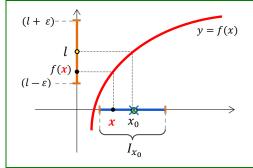
$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : \ \forall x \in D : 0 \neq |x - x_0| < \delta \ \Rightarrow \ |f(x) - l| < \varepsilon$$

La definizione algebrica di limite è una "traduzione" di quella insiemistica, quella qui sopra riportata si riferisce al caso in cui x_0 ed l sono numeri.

 $\varepsilon \in \delta$ rappresentano numeri positivi molto piccoli, in particolare:

- ε rappresenta il raggio dell'intorno J di centro l i cui estremi sono " $(l-\varepsilon)$ " ed " $(l+\varepsilon)$ "
- $\pmb{\delta}$ rappresenta il raggio dell'intorno \pmb{I} di centro $\pmb{x_0}$ i cui estremi sono " $(x_0-\delta)$ " ed " $(x_0+\delta)$ "

definizione mista



$$\forall \ \boldsymbol{\varepsilon} > 0 \ \exists \ \boldsymbol{I}_{x_0} : \forall x \in (\ \boldsymbol{I}_{x_0} \cap \boldsymbol{D}) - \{x_0\} \Rightarrow \ |f(x) - \boldsymbol{l}| < \varepsilon$$

La definizione mista di limite è una "composizione" delle due precedenti definizioni. In particolare essa prende la prima e l'ultima parte dalla definizione algebrica (che fa riferimento all'asse delle y) e prende la parte centrale dalla definizione topologica (che fa riferimento all'asse delle x).

La definizione qui sopra riportata si riferisce al caso in cui x_0 ed $\,l\,$ sono numeri.

osservazione importante

L'esistenza del limite di una funzione in un punto x_0 è **indipendente** dal comportamento della funzione nel punto x_0 stesso. Può infatti accadere che:

- nel punto x_0 esiste il limite l della funzione, esiste il valore della funzione $f(x_0)$ e sono uguali $l = f(x_0)$
- nel punto x_0 esiste il limite l della funzione, esiste il valore della funzione $f(x_0)$ ma sono diversi $l \neq f(x_0)$
- nel punto x_0 esiste il limite \boldsymbol{l} della funzione ma non esiste il valore della funzione $f(x_0)$