premessa agli assiomi dei numeri reali

Si assume che esiste l'insieme dei numeri reali (indicato con \mathbf{R}) su cui è possibile eseguire le quattro operazioni elementari $(+, -, \cdot, \cdot)$ e su cui è possibile stabilire quale tra due numeri è il maggiore. In questo sistema valgono gli assiomi delle operazioni, dell'ordinamento e l'assioma di completezza.

assiomi delle operazioni

Siano a, b, c tre numeri reali generici.

Tra essi sono definite le operazioni di addizione (+) e moltiplicazione (\cdot) con le seguenti proprietà:

proprietà associativa dell'addizione	(a+b)+c=a+(b+c)
proprietà associativa della moltiplicazione	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$
proprietà commutativa dell'addizione	a+b=b+a
proprietà commutativa della moltiplicazione	$a \cdot b = b \cdot a$
proprietà distributiva della moltiplicazione rispetto all'addizione	$a \cdot (b+c) = a \cdot b + a \cdot c$
esistenza dell'elemento neutro rispetto all'addizione	esiste in \mathbf{R} il numero 0 tale che $\mathbf{a} + 0 = \mathbf{a}$
esistenza dell'elemento neutro rispetto alla moltiplicazione	esiste in \mathbf{R} il numero 1 tale che $\mathbf{a} \cdot 1 = \mathbf{a}$
esistenza dell'opposto	per ogni numero reale a esiste un numero reale – a tale che $a+(-a)=0$
esistenza dell'inverso	per ogni numero reale $a \neq 0$ esiste un numero reale a^{-1} tale che $a \cdot (a^{-1}) = 1$

assiomi dell'ordinamento

Siano a, b, c tre numeri reali qualsiasi.

E' definita la relazione di minore o uguale (\leq) tra coppie di numeri reali con le seguenti proprietà:

dicotomia	per ogni coppia di numeri reali si ha $a \leq b$ oppure $b \leq a$
proprietà asimmetrica	se valgono contemporaneamente $a \le b$ e $b \le a$ allora $a = b$
altri assiomi	se vale $a \le b$ allora vale anche $a + c \le b + c$
altri assiomi	se $a \ge 0$ e $b \ge 0$ allora valgono anche $a + b \ge 0$ e $a \cdot b \ge 0$

assioma di completezza

se A e B sono due insiemi non vuoti di numeri reali tale che $a \le b$ per ogni a appartenente ad A e per ogni b appartenente a B, allora esiste almeno un numero reale c tale che $a \le c \le b$

alcune consequenze degli assiomi

Siano a, b, c tre numeri reali qualsiasi. Si dimostrano le seguenti proprietà:

consequenze degli assiomi relativi alle operazioni

semplificazione rispetto alla somma	se $a + b = a + c$ allora $b = c$
semplificazione rispetto al prodotto	se $a \neq 0$ e $a \cdot b = a \cdot c$ allora $b = c$
legge di annullamento del prodotto	$a \cdot b = 0$ se e solo se $a = 0$ oppure $b = 0$
unicità dell'opposto	l'opposto di un numero reale è unico
unicità dell'inverso	l'inverso di un numero reale non nullo è unico
altra proprietà	$-\left(-a\right) =a$
altra proprietà	$(-a)\cdot b=-a\cdot b$
altra proprietà	$(-a)\cdot(-b)=a\cdot b$

conseguenze degli assiomi relativi all'ordinamento

proprietà dell'equivalenza	$a \leq b$ è equivalente a $b-a \geq 0$
proprietà transitiva	se $a \leq b$ e $b \leq c$ allora $a \leq c$
altre proprietà	$a \ge 0$ se e soltanto se $-a \le 0$
altre proprietà	se $a \le b$ e $c \ge 0$ allora $a \cdot c \le b \cdot c$
altre proprietà	se $a \le b$ e $c \le 0$ allora $a \cdot c \ge b \cdot c$

la relazione di maggiore o uguale (\geq) è ricondotta a quella di minore o uguale mediante la **definizione** $a \geq b \iff b \leq a$ La relazione di \geq gode delle stesse proprietà della relazione di \leq

una conseguenza dell'assioma di completezza

Una importante conseguenza dell'assioma di completezza è che consente di distinguere l'insieme dei numeri razionali ${\bf Q}$ da quello dei numeri reali ${\bf R}$.

Tale assioma vale infatti solo per i numeri reali e non vale per i numeri razionali come mostrato nel seguente esempio.

Consideriamo i sottoinsiemi A e B dei numeri razionali \mathbf{Q} con $A \subseteq Q$ e $B \subseteq Q$ tali che $A = \{a \in \mathbf{Q} \mid a \leq 0\} \cup \{a \in \mathbf{Q} \mid a > 0, \ a^2 < 2\}$ e $B = \{b \in \mathbf{Q} \mid b \geq 0, \ b^2 \geq 2\}$. Si può verificare che: $a < b \ \forall \ a \in A \ e \ \forall \ b \in B \ e \ che \ A \cup B = \mathbf{Q} \ e \ A \cap B = \emptyset$.

Dunque le ipotesi dell'assioma di completezza per gli insiemi A e B sono soddisfatte ma NON esiste un numero razionale ${\bf c}$ tale che $a \le c \le b$. Infatti si dimostra che l'unico elemento che si trova tra l'insieme A e l'insieme B è $\sqrt{\bf 2}$ che NON è un numero razionale.