Serie numeriche

Definizioni

Data la successione $\{a_n\}=a_1,a_2,a_3,\dots$, a_n,\dots si considerino le **somme parziali** s_1,s_2,\dots , s_n definite come:

$$s_1 = a_1$$
 $s_2 = a_1 + a_2$ $s_3 = a_1 + a_2 + a_3$ $s_4 = a_1 + a_2 + a_3 + a_4$ $s_n = a_1 + a_2 + a_3 + \cdots + a_n$

Si definisce **serie** di termine generale a_n la successione delle somme parziali $\{s_n\}$

Si definisce somma e si pone uguale a S il: $\lim_{n\to+\infty} s_n = S$ tale somma si indica anche con: $\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_n$

Carattere di una serie

Si definisce carattere di una serie la sua caratteristica di essere convergente, divergente o indeterminata

se S è finito	• la serie $\sum a_n$ si dice convergente
se $S = \pm \infty$	• la serie $\sum a_n$ si dice divergente (positivamente o negativamente)
altrimenti	• la serie $\sum a_n$ si dice indeterminata

una serie che sia convergente o divergente si dice regolare

Prime proprietà

assegnate due serie $\sum a_n$ e $\sum b_n$ ed un numero reale λ

$\sum a_n$ converge $\iff \sum \lambda \ a_n = \lambda \sum a_n$ converge	convergenza del prodotto di una costante per una serie
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	convergenza della somma di due serie convergenti

Condizione necessaria per la convergenza di una serie

Se
$$\sum a_n$$
 converge $\Rightarrow \lim_{n \to +\infty} a_n = 0$

condizione **necessaria** ma non sufficiente per la convergenza di una serie è che il termine generale sia infinitesimo

Alcune serie notevoli		
nome	simbologia	carattere
serie armonica	$\sum_{n=1}^{+\infty} \frac{1}{n}$	divergente
serie armonica generalizzata	$\sum_{n=1}^{+\infty} \frac{1}{n^p}$	$p \le 1$ divergente $p > 1$ convergente
serie geometrica di ragione q	$\sum_{n=0}^{+\infty} q^n$	$q \le 1$ irregolare $-1 < q < 1$ convergente $q \ge 1$ divergente
serie di Mengoli	$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$	convergente

Principali criteri di convergenza

Criterio del confronto per serie a termini non negativi

Date le successioni $\{a_n\}$ e $\{b_n\}$ sia:

• $0 \le a_n \le b_n$

se $\sum b_n$ converge $\Rightarrow \sum a_n$ converge

se $\sum a_n$ diverge $\Rightarrow \sum b_n$ diverge

Criterio del confronto asintotico per serie a termini non negativi

Date le successioni $\{a_n\}$ e $\{b_n\}$ sia:

- $a_n \ge 0, \ b_n > 0$
- $\lim_{n\to+\infty}\frac{a_n}{b_n}=l$

se $0 < l < +\infty \implies$ le serie $\sum a_n$ e $\sum b_n$ sono **entrambe** convergenti oppure divergenti

se l = 0 e $\sum b_n$ converge $\implies \sum a_n$ converge

se $l = +\infty$ e $\sum b_n$ diverge $\implies \sum a_n$ diverge

Criterio degli infinitesimi per serie a termini non negativi

Data la successione $\{a_n\}$ sia:

- $a_n \geq 0$
- $\lim_{n \to +\infty} n^p a_n = l \quad \text{con } p \in \mathbb{R}$

se $0 < l < +\infty$

 $p \le 1 \implies \sum a_n$ diverge

 $p > 1 \implies \sum a_n$ converge

se l=0 e $p>1 \implies \sum a_n$ converge

se $l = +\infty$ e $p \le 1 \implies \sum a_n$ diverge

Criterio della radice o di Cauchy per serie a termini positivi

Data la successione $\{a_n\}$ sia:

- $a_n > 0$
- $\lim_{n\to+\infty} \sqrt[n]{a_n} = l$

se $l < 1 \implies \sum a_n$ converge

se $l > 1 \implies \sum a_n$ diverge

se $l = 1 \implies$ non si può dire nulla

può essere utile in caso di serie con esponenziali

Criterio del rapporto o di D'Alembert per serie a termini positivi

Data la successione $\{a_n\}$ sia:

se $l < 1 \implies \sum a_n$ converge

 $a_n > 0$

 $\lim_{n\to+\infty}\frac{a_{n+1}}{a_n}=l$

se $l > 1 \implies \sum a_n$ diverge

se $l = 1 \implies$ non si può dire nulla

può essere utile in caso di serie con fattoriali

Criterio di Leibnitz per serie con termini a segno alterno decrescenti

Data la successione $\{a_n\}$ sia: $a_n \ge 0$

Data la serie alternante $\sum (-1)^n a_n$

- se $a_{n+1} \leq a_n$
- se $\lim_{n\to+\infty} a_n = 0$

 $\Rightarrow \sum (-1)^n a_n$ converge

Criterio di convergenza assoluta

Data la serie $\sum a_n$ e la serie $\sum |a_n|$

se $\sum |a_n|$ converge $\Rightarrow \sum a_n$ converge

Proprietà e teoremi

Definizione di serie a termini non negativi e di serie a termini positivi

Una **serie** $\sum a_n$ si definisce a termini non negativi se $a_n \ge 0 \quad \forall n \in \mathbb{N}$

Una **serie** $\sum a_n$ si definisce a termini positivi se $a_n > 0 \quad \forall n \in N$

Teorema sulle serie a termini non negativi

Una serie a termini non negativi è regolare cioè o converge oppure diverge positivamente

Dimostrazione

- Consideriamo la successione delle somme parziali $\{s_n\}$ dove $s_n = a_1 + a_2 + a_3 + \cdots + a_n$
- s_n si può anche scrivere come $s_n = s_{n-1} + a_n$
- Se minoriamo il secondo membro si ha: $s_n \ge s_{n-1}$.
- Ciò significa che la successione delle somme parziali è crescente
- Per il teorema sulle successioni monotone $\{s_n\}$ ammette limite e quindi la serie è regolare

Il teorema è verificato anche per serie a termini positivi

Condizione necessaria per la convergenza di una serie

Condizione **necessaria** ma non sufficiente per la convergenza di una serie è che il termine generale sia infinitesimo, cioè:

Se $\sum a_n$ converge allora $\lim_{n \to +\infty} a_n = 0$

Dimostrazione

- Per ipotesi la serie è convergente, indichiamo con S la sua somma
- Per definizione la somma è uguale al $\lim_{n \to +\infty} s_n = S$ dove $\{s_n\}$ è la successione delle somme parziali
- Dove $s_n = a_1 + a_2 + a_3 + \cdots + a_n$ che si può anche scrivere come $s_n = s_{n-1} + a_n$
- Da cui $a_n = s_n s_{n-1}$
- passando al limite ad entrambi i membri si ha:
- $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} (s_n s_{n-1}) = \lim_{n\to+\infty} s_n \lim_{n\to+\infty} s_{n-1} = S S = 0$ da cui la tesi