v 3.1

Elementi di logica delle proposizioni

definizioni

Una proposizione (o enunciato) è una affermazione che può essere Vera o Falsa

- "Parigi è la capitale della Francia"; "Roma è la capitale della Francia" sono proposizioni la prima è Vera, la seconda è Falsa
- "Il colore giallo non mi piace"; "Londra è la città più bella del mondo" **non** sono proposizioni

Una tautologia è una proposizione sempre Vera

• "Ora sono le nove O non sono le nove"

è una tautologia perché è una proposizione sempre Vera

Una contraddizione è una proposizione sempre Falsa

• "Ora sono le nove e non sono le nove"

è una contraddizione perché è una proposizione sempre Falsa

Un **paradosso** è una proposizione che, **se si suppone Vera risulta Falsa** e se si suppone Falsa risulta Vera

• "Questa frase è falsa"

è un paradosso perchè se supponiamo la frase Vera allora risulta Falsa Viceversa se supponiamo la frase Falsa allora risulta Vera

principi				
Principio del terzo escluso	se una proposizione è Vera allora la sua negazione è Falsa e non esiste una terza possibilità			
Principio di non contraddizione	una proposizione non può essere contemporaneamente Vera e Falsa			

operatori logici e tavole di verità								
propo	sizioni	non	e	O	xor	implicazione	doppia implicazione	
p	q	\overline{p}	$p \wedge q$	$p \lor q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$	
V	V	F	V	V	F	V	V	
V	F	F	F	V	V	F	F	
F	V	V	F	V	V	V	F	
F	F	V	F	F	F	V	V	

proprietà e leggi							
$p \wedge p = p$ $p \vee p = p$	proprietà di idempotenza						
$p \land q = q \land p$ $p \lor q = q \lor p$	proprietà commutativa						
$p \wedge (q \wedge r) = (p \wedge q) \wedge r$ $p \vee (q \vee r) = (p \vee q) \vee r$	proprietà associativa						
$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$	proprietà distributiva						
$p \wedge (p \vee q) = q$ $p \vee (p \wedge q) = p$	proprietà di assorbimento						
$\overline{p \wedge q} = \overline{p} \vee \overline{q}$	1 ^a legge di De Morgan: "non (p e q) è uguale a non p o non q"						
$\overline{p \lor q} = \overline{p} \land \overline{q}$	2ª legge di De Morgan: "non (p o q) è uguale a non p e non q"						

Elementi di logica delle proposizioni

esempi sulle tavole di verità

Costruiamo la tavola di verità dell'espressione logica $\overline{p} \wedge \overline{q}$

p	q	$p \wedge q$	$\overline{p \wedge q}$
V	V	V	F
V	F	F	v
F	V	F	v
F	F	F	v

- 1. si costruisce la tavola di verità delle proposizioni p e q considerandone tutte le possibili combinazioni di vero V e falso F (1^a e 2^a colonna)
- 2. si applica l'operatore \mathbf{e} (Λ) alle proposizioni p e q e si costruisce la tavola di verità (3^a colonna)
- 3. si applica l'operatore **non** () alla proposizione composta $p \land q$ e si costruisce la tavola di verità (4ª colonna)

• Costruiamo la tavola di verità dell'espressione logica $\overline{p} \lor q$

p	q	\overline{p}	$\overline{p} \lor q$
V	V	F	v
V	F	F	F
F	V	V	V
F	F	V	v

- 1. si costruisce la tavola di verità delle proposizioni p e q considerandone tutte le possibili combinazioni di vero V e falso F (1^a e 2^a colonna)
- 2. si costruisce la tavola di verità della proposizione \overline{p} (3^a colonna)
- 3. si applica l'operatore **o** (V) alle proposizioni \overline{p} e q e si costruisce la tavola di verità dell'espressione logica $\overline{p} \vee q$ (4ª colonna)

• Costruiamo la tavola di verità dell'espressione logica $(p o q) \wedge p$

p	q	$p \rightarrow q$	$(p \rightarrow q) \wedge p$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

- 1. si costruisce la tavola di verità delle proposizioni p e q considerandone tutte le possibili combinazioni di V ed F (1^a e 2^a colonna)
- 2. si applica l'operatore **implicazione** (\rightarrow) alle proposizioni p e q e si costruisce la tavola di verità di $p \rightarrow q$ (3^a colonna)
- 3. si applica l'operatore ${\bf e}$ (${\bf \Lambda}$) alle proposizioni $p \to q$ e q e si costruisce la tavola di verità (${\bf 4}^a$ colonna)

• Costruiamo la tavola di verità dell'espressione logica $(p \lor \overline{q}) \to \overline{p \land q}$

	p	q	\overline{q}	$p \vee \overline{q}$	$p \wedge q$	$\overline{p \wedge q}$	$(p \vee \overline{q}) \rightarrow \overline{p \wedge q}$	
I	V	V	F	V	V	F	F	
	V	F	V	V	F	V	v	
	F	V	F	F	F	V	v	
Ī	F	F	V	V	F	V	V	

• Costruiamo la tavola di verità dell'espressione logica $(\overline{p} \lor q) \leftrightarrow p \land \overline{q}$

p	q	\overline{p}	\overline{q}	$\overline{p} \lor q$	$p \wedge \overline{q}$	$(\overline{p} \dot{\vee} q) \leftrightarrow p \wedge \overline{q}$
V	V	F	F	V	F	F
V	F	F	V	F	V	F
F	V	V	F	F	F	v
F	F	V	V	V	F	F

Elementi di logica delle proposizioni

esempi di passaggio dal linguaggio naturale alle espressioni logiche

Individua le proposizioni delle seguenti espressioni ed esprimi l'espressione sotto forma di operatori logici

Data l'espressione: "mangio una mela o una pera "

Le proposizioni sono: p = "mangio una mela" q = "mangio una pera"

L'espressione logica si scrive: $p \lor q$

Data l'espressione: " se oggi esce il sole allora vado al mare "

Le proposizioni sono: p = "oggi esce il sole "q = "vado al mare "

L'espressione logica si scrive: $p \rightarrow q$

Data l'espressione: "non è vero che questo argomento è semplice ed interessante "

Le proposizioni sono: p = "questo argomento è semplice" q = "questo argomento è interessante"

L'espressione logica si scrive: $\overline{p \wedge q}$

Data l'espressione: "se il professore ti ha valutato con 4 vuol dire che non hai studiato. Se avessi studiato e non

fossi uscito con gli amici avresti avuto un bel voto. O studi o esci con gli amici "

Le proposizioni sono: p = " il professore ti valuta con 4" q = " studiare "

r = "uscire con gli amici" s = "avere un bel voto"

L'espressione logica si scrive: $p \to \overline{q} \land (q \land \overline{r}) \to s \land q \lor r$

approfondimenti ed esempi sulle proprietà e leggi della logica

legge della doppia negazione

Data l'espressione: " non è vero che Giulio non ha dormito "

la proposizione che la compone è: p = "Giulio ha dormito"

l'equivalente espressione logica è: \overline{p}

regola della contrapposizione

La legge si enuncia: p implica q è equivalente a (non q) implica (non p)

In simboli: $p \rightarrow q = \overline{q} \rightarrow \overline{p}$

p	q	\overline{p}	\overline{q}	p o q	$\overline{m{q}} ightarrow \overline{m{p}}$
V	V	F	F	v	V
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V

- 1. si costruisce la tavola di verità per ciascuna proposizione e per ciascun operatore che agisce sulle proposizioni
- 2. si confrontano le tavole di verità delle espressioni logiche $p \rightarrow q$ e $\overline{q} \rightarrow \overline{p}$ (5^a e 6^a colonna)
- 3. poiché coincidono allora l'uguaglianza è verificata

Esempio: "Se piove allora esco con l'ombrello " equivale a " Se non esco con l'ombrello allora non piove " perché identificate le proposizioni p = " piove " e q = " esco con l'ombrello "

si ha $\overline{p}=$ "non piove " e $\overline{q}=$ "non esco con l'ombrello "

da cui $\overline{q} \rightarrow \overline{p} =$ "se non esco con l'ombrello allora non piove "

Elementi di logica delle proposizioni

1ª legge di De Morgan

La legge si enuncia: non (p e q) è uguale a (non p) o (non q)

In simboli: \bar{i}

$$\overline{p \wedge q} = \overline{p} \vee \overline{q}$$

p	q	\overline{p}	\overline{q}	$p \wedge q$	$\overline{p \wedge q}$	$\overline{p} \vee \overline{q}$
V	V	F	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	F	V	V	F	V	V

- si costruisce la tavola di verità per ciascuna proposizione e per ciascun operatore applicato alle proposizioni
- 2. si confrontano le tavole di verità delle espressioni logiche $\overline{p \wedge q}$ e $\overline{p} \vee \overline{q}$ (6° e 7° colonna)
- 3. se coincidono allora l'uguaglianza è verificata

Esempio: " non è vero che Lia ama le viole **e** le rose " equivale a " Lia non ama le viole **o** non ama le rose " perché identificate le proposizioni p = " Lia ama le viole " p = " Lia ama le rose "

si ha \overline{p} = "Lia **non** ama le viole" e \overline{q} = "Lia **non** ama le rose"

da cui $\overline{p} \vee \overline{q} =$ "Lia ama le viole **o** non ama le rose "

2ª legge di De Morgan

La legge si enuncia: non $(p \circ q)$ è uguale a (non p) e (non q)

In simboli:

$$\overline{p \vee q} = \overline{p} \wedge \overline{q}$$

p	q	\overline{p}	\overline{q}	$p \lor q$	$\overline{p \lor q}$	$\overline{p} \wedge \overline{q}$
V	V	F	F	V	F	F
V	F	F	V	V	F	F
F	V	V	F	V	F	F
F	F	V	V	F	V	V

- 1. si costruisce la tavola di verità per ciascuna proposizione e per ciascun operatore che agisce sulle proposizioni
- 2. si confrontano le tavole di verità delle espressioni logiche $\overline{p \vee q}$ e $\overline{p} \wedge \overline{q}$ (6a e 7a colonna)
- 3. se coincidono allora l'uguaglianza è verificata

Esempio: " non è vero che domani piove ${\bf o}$ nevica" equivale a " domani non piove ${\bf e}$ non nevica "

perché identificate le proposizioni p = "domani piove" e q = "domani nevica"

si ha $\overline{p} =$ "domani **non** piove" e $\overline{q} =$ "domani **non** nevica"

da cui $\overline{p} \vee \overline{q} =$ "domani non piove **e** non nevica"

esempi di paradossi famosi

Un paradosso è una proposizione che, se si suppone Vera risulta Falsa e se si suppone Falsa risulta Vera. Riportiamo due dei paradossi più famosi della logica.

Paradosso del mentitore o di Epimenide: "Tutti i Cretesi sono bugiardi. Io sono Cretese"

Paradosso (o antinomia) di Russell:

"In un villaggio vi è un solo barbiere che rade tutti e soli gli uomini del villaggio che non si radono da soli. Il barbiere rade se stesso?"